alexa Response of Eucalyptus grandis trees to soil water deficits.
Environmental Sciences

Environmental Sciences

Hydrology: Current Research

Author(s): Dye PJ

Abstract Share this page

Abstract The use of potential transpiration models to simulate transpiration rates in areas prone to soil water deficits leads to overestimates of water use as the soil dries. Therefore, I carried out studies on Eucalyptus grandis W. Hill ex Maiden trees subjected to soil drying at two field sites in the Mpumalanga province of South Africa to determine the relation between transpiration rate and soil water availability. I hypothesized that, with this relationship defined, simple modeling of the soil water balance could be used to predict what fraction of potential transpiration was taking place at a given time. Site 1 supported a stand of 3-year-old E. grandis trees, whereas 9-year-old trees were growing on Site 2, situated 2 km away. At each site, plastic sheeting was laid over the ground to prevent soil water recharge and thereby allow the roots in the soil to induce a continuous progressive depletion of soil water. Measurements of predawn xylem pressure potential, leaf area index, growth and sap flow rates revealed that prevention of soil water recharge resulted in only moderate drought stress. At Site 1, the trees abstracted water down to 8 m below the surface, whereas trees at Site 2 obtained most of their water from depths below 8 m. I found that modeling the water balance of deep rooting zones is impractical for the purpose of simulating nonpotential transpiration rates because of uncertainties about the depth of the root system, the soil water recharge mechanism and the water retention characteristics of the deep subsoil strata. I conclude that predicting the occurrence and severity of soil water deficits from the soil water balance is not feasible at these sites.
This article was published in Tree Physiol and referenced in Hydrology: Current Research

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords