alexa Response surface methodology for the optimization of ubiquinone self-nanoemulsified drug delivery system.
Chemical Engineering

Chemical Engineering

Journal of Advanced Chemical Engineering

Author(s): Nazzal S, Khan MA

Abstract Share this page

Abstract The aim of the present study was to prepare and evaluate an optimized, self-nanoemulsified drug delivery system of ubiquinone. A 3-factor, 3-level Box-Behnken design was used for the optimization procedure with the amounts of Polyoxyl 35 castor oil (X1), medium-chain mono- and diglyceride (X2), and lemon oil (X3) as the independent variables. The response variable was the cumulative percentage of ubiquinone emulsified in 10 minutes. Different ubiquinone release rates were obtained. The amount released ranged from 11\% to 102.3\%. Turbidity profile revealed 3 regions that were used to describe the progress of emulsion formation: lag phase, pseudolinear phase, and plateau turbidity. An increase in the amount of surfactant decreased turbidity values and caused a delay in lag time. Addition of cosurfactant enhanced the release rates. Increasing the amount of the eutectic agent was necessary to overcome drug precipitation especially at higher loading of surfactants and cosurfactants. Mathematical equations and response surface plots were used to relate the dependent and independent variables. The regression equation generated for the cumulative percentage emulsified in 10 minutes was Y1 = 90.9 - 22.1X1 + 5.03X2 + 13.95X3 + 12.13X1X2 + 15.13X1X3 - 14.40X1(2) - 6.25X3(2). The optimization model predicted a 93.4\% release with X1, X2, and X3 levels of 35, 35, and 30 respectively. The observed responses were in close agreement with the predicted values of the optimized formulation. This demonstrated the reliability of the optimization procedure in predicting the dissolution behavior of a self-emulsified drug delivery system.
This article was published in AAPS PharmSciTech and referenced in Journal of Advanced Chemical Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords