alexa Responses of sugar beet roots to iron deficiency. Changes in carbon assimilation and oxygen use.
Agri and Aquaculture

Agri and Aquaculture

Advances in Crop Science and Technology

Author(s): LpezMilln AF, Morales F, Andaluz S, Gogorcena Y, Abada A,

Abstract Share this page

Abstract Different root parts with or without increased iron-reducing activities have been studied in iron-deficient and iron-sufficient control sugar beet (Beta vulgaris L. Monohil hybrid). The distal root parts of iron-deficient plants, 0 to 5 mm from the root apex, were capable to reduce Fe(III)-chelates and contained concentrations of flavins near 700 microM, two characteristics absent in the 5 to 10 mm sections of iron-deficient plants and the whole root of iron-sufficient plants. Flavin-containing root tips had large pools of carboxylic acids and high activities of enzymes involved in organic acid metabolism. In iron-deficient yellow root tips there was a large increase in carbon fixation associated to an increase in phosphoenolpyruvate carboxylase activity. Part of this carbon was used, through an increase in mitochondrial activity, to increase the capacity to produce reducing power, whereas another part was exported via xylem. Root respiration was increased by iron deficiency. In sugar beet iron-deficient roots flavins would provide a suitable link between the increased capacity to produce reduced nucleotides and the plasma membrane associated ferric chelate reductase enzyme(s). Iron-deficient roots had a large oxygen consumption rate in the presence of cyanide and hydroxisalycilic acid, suggesting that the ferric chelate reductase enzyme is able to reduce oxygen in the absence of Fe(III)-chelates.
This article was published in Plant Physiol and referenced in Advances in Crop Science and Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords