alexa Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function.
Pathology

Pathology

Journal of Clinical & Experimental Pathology

Author(s): Zhang C, Cuervo AM

Abstract Share this page

Abstract Chaperone-mediated autophagy (CMA), a selective mechanism for degradation of cytosolic proteins in lysosomes, contributes to the removal of altered proteins as part of the cellular quality-control systems. We have previously found that CMA activity declines in aged organisms and have proposed that this failure in cellular clearance could contribute to the accumulation of altered proteins, the abnormal cellular homeostasis and, eventually, the functional loss characteristic of aged organisms. To determine whether these negative features of aging can be prevented by maintaining efficient autophagic activity until late in life, in this work we have corrected the CMA defect in aged rodents. We have generated a double transgenic mouse model in which the amount of the lysosomal receptor for CMA, previously shown to decrease in abundance with age, can be modulated. We have analyzed in this model the consequences of preventing the age-dependent decrease in receptor abundance in aged rodents at the cellular and organ levels. We show here that CMA activity is maintained until advanced ages if the decrease in the receptor abundance is prevented and that preservation of autophagic activity is associated with lower intracellular accumulation of damaged proteins, better ability to handle protein damage and improved organ function.
This article was published in Nat Med and referenced in Journal of Clinical & Experimental Pathology

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords