alexa Results from the "Technical workshop on genotoxicity biosensing" on the micro-scale fluorometric assay of deoxyribonucleic acid unwinding.
Engineering

Engineering

Journal of Biosensors & Bioelectronics

Author(s): BaumstarkKhan C, Horneck G

Abstract Share this page

Abstract The fluorometric analysis of DNA unwinding (FADU assay) was originally designed for rapid detection of X-ray-induced DNA damage in mammalian cells. This cellular bioassay is based on time-dependent alkaline denaturation of DNA under moderate denaturing conditions (pH 12.2-12.4) starting from ends as well as from all DNA break points (single-strand breaks, SSB; double-strand breaks, DSB; alkali-labile sites, ALS). DNA which remained double-stranded after 30 min of alkaline treatment was detected after neutralisation and immediate fragmentation followed by binding to the Hoechst 33258 dye (bisbenzimide) and fluorescence measures. In the current paper, a modified method was used which allows cell cultivation and chemical treatment in the same microplate (micro-FADU) followed by analysis of 96 samples in a microplate fluorescence reader. Exposure of mammalian cells to chemicals was performed for 60 min on ice thus allowing identification of direct acting substances capable of inducing DNA-strand breaks. As an inter-assay standard the action of hydrogen peroxide was tested in every test plate. The results demonstrate that the micro-FADU assay is suitable to detect the presence of chemically induced strand breaks within 3 h. This article was published in Anal Chim Acta and referenced in Journal of Biosensors & Bioelectronics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords