alexa Resveratrol enhances airway surface liquid depth in sinonasal epithelium by increasing cystic fibrosis transmembrane conductance regulator open probability.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Genetic Syndromes & Gene Therapy

Author(s): Zhang S, Blount AC, McNicholas CM, Skinner DF, Chestnut M,

Abstract Share this page

Abstract BACKGROUND: Chronic rhinosinusitis engenders enormous morbidity in the general population, and is often refractory to medical intervention. Compounds that augment mucociliary clearance in airway epithelia represent a novel treatment strategy for diseases of mucus stasis. A dominant fluid and electrolyte secretory pathway in the nasal airways is governed by the cystic fibrosis transmembrane conductance regulator (CFTR). The objectives of the present study were to test resveratrol, a strong potentiator of CFTR channel open probability, in preparation for a clinical trial of mucociliary activators in human sinus disease. METHODS: Primary sinonasal epithelial cells, immortalized bronchoepithelial cells (wild type and F508del CFTR), and HEK293 cells expressing exogenous human CFTR were investigated by Ussing chamber as well as patch clamp technique under non-phosphorylating conditions. Effects on airway surface liquid depth were measured using confocal laser scanning microscopy. Impact on CFTR gene expression was measured by quantitative reverse transcriptase polymerase chain reaction. RESULTS: Resveratrol is a robust CFTR channel potentiator in numerous mammalian species. The compound also activated temperature corrected F508del CFTR and enhanced CFTR-dependent chloride secretion in human sinus epithelium ex vivo to an extent comparable to the recently approved CFTR potentiator, ivacaftor. Using inside out patches from apical membranes of murine cells, resveratrol stimulated an ~8 picosiemens chloride channel consistent with CFTR. This observation was confirmed in HEK293 cells expressing exogenous CFTR. Treatment of sinonasal epithelium resulted in a significant increase in airway surface liquid depth (in ┬Ám: 8.08+/-1.68 vs. 6.11+/-0.47,control,p<0.05). There was no increase CFTR mRNA. CONCLUSION: Resveratrol is a potent chloride secretagogue from the mucosal surface of sinonasal epithelium, and hydrates airway surface liquid by increasing CFTR channel open probability. The foundation for a clinical trial utilizing resveratrol as a therapeutic intervention to increase mucociliary transport and airway surface liquid hydration in sinus disease is strongly supported by these findings.
This article was published in PLoS One and referenced in Journal of Genetic Syndromes & Gene Therapy

Relevant Expert PPTs

Recommended Conferences

  • 10th International Conference on Genomics and Molecular Biology
    May 21-23, 2018 Barcelona, Spain
  • 5th International Conference on Human Genetics and Genetic Disorders September 21-22,2018 Philadelphia, USA Theme: Sharing Discoveries of the Future Human Genome
    September 21-22,2018 Philadelphia, USA
  • 3rd World Congress on Human Genetics & Genetic Disorders
    October 20-21, 2017 Toronto, Canada

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords