alexa Retinoic acid signaling in development: tissue-specific functions and evolutionary origins.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): CampoPaysaa F, Marltaz F, Laudet V, Schubert M

Abstract Share this page

Abstract Retinoic acid (RA) is a vitamin A-derived morphogen important for axial patterning and organ formation in developing vertebrates and invertebrate chordates (tunicates and cephalochordates). Recent analyses of genomic data have revealed that the molecular components of the RA signaling cascade are also present in other invertebrate groups, such as hemichordates and sea urchins. In this review, we reassess the evolutionary origins of the RA signaling pathway by examining the presence of key factors of this signaling cascade in different metazoan genomes and by comparing tissue-specific roles for RA during development of different animals. This discussion of genomic and developmental data suggests that RA signaling might have originated earlier in metazoan evolution than previously thought. On the basis of this hypothesis, we conclude by proposing a scenario for the evolution of RA functions during development, which highlights functional gains and lineage-specific losses during metazoan diversification. Copyright 2008 Wiley-Liss, Inc. This article was published in Genesis and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version