alexa Retinoic acid stimulates annexin-mediated growth plate chondrocyte mineralization.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Tissue Science & Engineering

Author(s): Wang W, Kirsch T

Abstract Share this page

Abstract Biomineralization is a highly regulated process that plays a major role during the development of skeletal tissues. Despite its obvious importance, little is known about its regulation. Previously, it has been demonstrated that retinoic acid (RA) stimulates terminal differentiation and mineralization of growth plate chondrocytes (Iwamoto, M., I.M. Shapiro, K. Yagumi, A.L. Boskey, P.S. Leboy, S.L. Adams, and M. Pacifici. 1993. Exp. Cell Res. 207:413-420). In this study, we provide evidence that RA treatment of growth plate chondrocytes caused a series of events eventually leading to mineralization of these cultures: increase in cytosolic calcium concentration, followed by up-regulation of annexin II, V, and VI gene expression, and release of annexin II-, V-, VI- and alkaline phosphatase-containing matrix vesicles. Cotreatment of growth plate chondrocytes with RA and BAPTA-AM, a cell permeable Ca2+ chelator, inhibited the up-regulation of annexin gene expression and mineralization of these cultures. Interestingly, only matrix vesicles isolated from RA-treated cells that contained annexins, were able to take up Ca2+ and mineralize, whereas vesicles isolated from untreated or RA/BAPTA-treated cells, that contained no or only little annexins were not able to take up Ca2+ and mineralize. Cotreatment of chondrocytes with RA and EDTA revealed that increases in the cytosolic calcium concentration were due to influx of extracellular calcium. Interestingly, the novel 1,4-benzothiazepine derivative K-201, a specific annexin Ca2+ channel blocker, or antibodies specific for annexin II, V, or VI inhibited the increases in cytosolic calcium concentration in RA-treated chondrocytes. These findings indicate that annexins II, V, and VI form Ca2+ channels in the plasma membrane of terminally differentiated growth plate chondrocytes and mediate Ca2+ influx into these cells. The resulting increased cytosolic calcium concentration leads to a further up-regulation of annexin II, V, and VI gene expression, the release of annexin II-, V-, VI- and alkaline phosphatase-containing matrix vesicles, and the initiation of mineralization by these vesicles.
This article was published in J Cell Biol and referenced in Journal of Tissue Science & Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 12th Edition of International Conference on Tissue Engineering and Regenerative Medicine
    May 10-11, 2018,Frankfurt, Germany
  • 4th International Conference on Synthetic Biology and Tissue Engineering
    June 11-12, 2018 Rome, Italy
  • 9th International Conference on Tissue Science and Regenerative Medicine
    July 19-20, 2018 Melbourne, Australia
  • 4th International Conference on Wound Care, Tissue Repair & Regenerative Medicine
    October 5-6, 2018 Los Angeles, USA
  • 9th International Conference on Tissue Engineering and Regenerative Medicine
    November 9-10 , 2018 Atlanta, Georgia ,USA

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

agriaquaculture@omicsonline.com

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

biochemjournals@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

chemistryjournals@omicsonline.com

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

clinicaljournals@omicsonline.com

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

engineeringjournals@omicsonline.com

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

nutritionjournals@omicsonline.com

1-702-714-7001Extn: 9042

General Science

Andrea Jason

generalscience@omicsonline.com

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

geneticsmolbio@omicsonline.com

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immunomicrobiol@omicsonline.com

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

nursinghealthcare@omicsonline.com

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

medicaljournals@omicsonline.com

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuropsychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

pharmajournals@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords