alexa Retrovirus and lentivirus vector design and methods of cell conditioning.
Reproductive Medicine

Reproductive Medicine

Journal of Fertilization: In Vitro - IVF-Worldwide, Reproductive Medicine, Genetics & Stem Cell Biology

Author(s): Cooray S, Howe SJ, Thrasher AJ

Abstract Share this page

Abstract Retroviruses are useful tools for the efficient delivery of genes to mammalian cells, owing to their ability to stably integrate into the host cell genome. Over the past few decades, retroviral vectors have been used in gene therapy clinical trials for the treatment of a number of inherited diseases and cancers. The earliest retrovirus vectors were based on simple oncogenic gammaretroviruses such as Moloney murine leukemia virus (MMLV) which, when pseudotyped with envelope proteins from other viruses such as the gibbon ape leukemia virus envelope protein (GALV) or vesicular stomatitis virus G protein (VSV-G), can efficiently introduce genes to a wide range of host cells. However, gammaretroviral vectors have the disadvantage that they are unable to efficiently transduce nondividing or slowly dividing cells. As a result, specific protocols have been developed to activate cells through the use of growth factors and cytokines. In the case of hematopoietic stem cells, activation has to be carefully controlled so that pluripotency is maintained. For many applications, gammaretroviral vectors are being superseded by lentiviral vectors based on human immunodeficiency virus type-1 (HIV-1) which has additional accessory proteins that enable integration in the absence of cell division. In addition, retroviral and lentiviral vector design has evolved to address a number of safety concerns. These include separate expression of the viral genes in trans to prevent recombination events leading to the generation of replication-competent viruses. Further, the development of self-inactivating (SIN) vectors reduces the potential for transactivation of neighboring genes and allows the incorporation of regulatory elements that may target gene expression more physiologically to particular cell types. Copyright © 2012 Elsevier Inc. All rights reserved. This article was published in Methods Enzymol and referenced in Journal of Fertilization: In Vitro - IVF-Worldwide, Reproductive Medicine, Genetics & Stem Cell Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords