alexa Revealing the Reconstructed Surface of Li[Mn2]O4.
Materials Science

Materials Science

Journal of Material Sciences & Engineering

Author(s): Amos CD, Roldan MA, , Varela M, , , Amos CD, Roldan MA, , Varela M, ,

Abstract Share this page

Abstract The spinel Li[Mn2]O4 is a candidate cathode for a Li-ion battery, but its capacity fades over a charge/discharge cycle of Li1-x[Mn2]O4 (0 < x < 1) that is associated with a loss of Mn to the organic-liquid electrolyte. It is known that the disproportionation reaction 2Mn(3+) = Mn(2+) + Mn(4+) occurs at the surface of a Mn spinel, and it is important to understand the atomic structure and composition of the surface of Li[Mn2]O4 in order to understand how Mn loss occurs. We report a study of the surface reconstruction of Li[Mn2]O4 by aberration-corrected scanning transmission electron microscopy. The atomic structure coupled with Mn-valence and the distribution of the atomic ratio of oxygen obtained by electron energy loss spectroscopy reveals a thin, stable surface layer of Mn3O4, a subsurface region of Li1+x[Mn2]O4 with retention of bulk Li[Mn2]O4. This observation is compatible with the disproportionation reaction coupled with oxygen deficiency and a displacement of surface Li(+) from the Mn3O4 surface phase. These results provide a critical step toward understanding how Mn is lost from Li[Mn2]O4, once inside a battery. This article was published in Nano Lett and referenced in Journal of Material Sciences & Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 10th International Conference on Advanced Materials and Processing
    August 16-17 Edinburgh, Scotland
  • 3rd International Conference on Polymer Science and Engineering
    October 2-4, 2017 Chicago, USA
  • International Conference on Advanced Materials and Nanotechnology
    October 26-28, 2017 Osaka, Japan
  • 13th International Conference and Exhibition on Materials Science and Engineering
    November 13-15, 2017 Las Vegas, Nevada, USA
  • 14th International Conference on Functional Energy Materials
    December 06-07, 2017 Atlanta, USA

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version