alexa Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
Biomedical Sciences

Biomedical Sciences

International Journal of Biomedical Data Mining

Author(s): PETER J GREEN

Abstract Share this page

Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some fixed standard underlying measure. They have therefore not been available for application to Bayesian model determination, where the dimensionality of the parameter vector is typically not fixed. This paper proposes a new framework for the construction of reversible Markov chain samplers that jump between parameter subspaces of differing dimensionality, which is flexible and entirely constructive. It should therefore have wide applicability in model determination problems. The methodology is illustrated with applications to multiple change-point analysis in one and two dimensions, and to a Bayesian comparison of binomial experiments.

This article was published in Biometrika and referenced in International Journal of Biomedical Data Mining

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords