alexa Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Molecular Biomarkers & Diagnosis

Author(s): Arendt T, Stieler J, Strijkstra AM, Hut RA, Rdiger J,

Abstract Share this page

Abstract Neurofibrillary pathology [paired helical filaments (PHFs)] formed by the microtubule-associated protein tau in a hyperphosphorylated form is a major hallmark of Alzheimer's disease and related disorders. The process of tau phosphorylation, thought to be of critical importance for PHF formation, and its potential link to neurodegeneration, however, is not understood very well, mostly because of the lack of a physiological in vivo model of PHF-like tau phosphorylation. Here we describe the formation of highly phosphorylated tau, containing a number of PHF-like epitopes in torpor during hibernation. PHF-like phosphorylation of tau was not associated with fibril formation and was fully reversible after arousal. Distribution of PHF-like tau followed a consistent pattern, being most intense in the entorhinal cortex, hippocampus, and isocortical areas. Within the hippocampus, a particularly high labeling was seen in CA3 pyramidal cells. Somewhat lesser reactivity was present in CA1 neurons while dentate gyrus granule cells were not reactive. Formation of PHF-like tau in CA3 neurons was paralleled by the regression of synaptic contacts of the mossy fiber system terminating on CA3 apical dendrites. Mossy fiber afferentation was re-established during arousal, concomitantly with the decrease of PHF-like tau in CA3 neurons. These findings implicate an essential link between neuronal plasticity and PHF-like phosphorylation of tau. The repeated formation and degradation of PHF-like tau might, thus, represent a physiological mechanism not necessarily associated with pathological effects. Hibernation will, therefore, be a valuable model to study the regulation of PHF-like tau-phosphorylation and its cell biological sequelae under physiological in vivo conditions.
This article was published in J Neurosci and referenced in Journal of Molecular Biomarkers & Diagnosis

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference and Expo on Molecular & Cancer Biomarkers
    August 23-24, 2017 Birmingham, UK
  • 2nd International Conference on Medical Imaging and Diagnosis
    London, UK
  • 22nd International Conference on Cancer Drugs and Therapeutics
    Paris, France
  • International Conference on Oncology Nursing and Cancer Care
    Singapore City, Singapore
  • World Summit on Cell Signalling and Cancer Therapy
    Toronto, Canada
  • International Conference on Radiology and Imaging
    New York, USA

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version