alexa Review of the U.S. Department of Energy's "deep dive" effort to understand voltage fade in Li- and Mn-rich cathodes.
Engineering

Engineering

Journal of Steel Structures & Construction

Author(s): Croy JR, Balasubramanian M, Gallagher KG, Burrell AK

Abstract Share this page

Abstract The commercial introduction of the lithium-ion (Li-ion) battery nearly 25 years ago marked a technological turning point. Portable electronics, dependent on energy storage devices, have permeated our world and profoundly affected our daily lives in a way that cannot be understated. Now, at a time when societies and governments alike are acutely aware of the need for advanced energy solutions, the Li-ion battery may again change the way we do business. With roughly two-thirds of daily oil consumption in the United States allotted for transportation, the possibility of efficient and affordable electric vehicles suggests a way to substantially alleviate the Country's dependence on oil and mitigate the rise of greenhouse gases. Although commercialized Li-ion batteries do not currently meet the stringent demands of a would-be, economically competitive, electrified vehicle fleet, significant efforts are being focused on promising new materials for the next generation of Li-ion batteries. The leading class of materials most suitable for the challenge is the Li- and manganese-rich class of oxides. Denoted as LMR-NMC (Li-manganese-rich, nickel, manganese, cobalt), these materials could significantly improve energy densities, cost, and safety, relative to state-of-the-art Ni- and Co-rich Li-ion cells, if successfully developed.1 The success or failure of such a development relies heavily on understanding two defining characteristics of LMR-NMC cathodes. The first is a mechanism whereby the average voltage of cells continuously decreases with each successive charge and discharge cycle. This phenomenon, known as voltage fade, decreases the energy output of cells to unacceptable levels too early in cycling. The second characteristic is a pronounced hysteresis, or voltage difference, between charge and discharge cycles. The hysteresis represents not only an energy inefficiency (i.e., energy in vs energy out) but may also complicate the state of charge/depth of discharge management of larger systems, especially when accompanied by voltage fade. In 2012, the United States Department of Energy's Office of Vehicle Technologies, well aware of the inherent potential of LMR-NMC materials for improving the energy density of automotive energy storage systems, tasked a team of scientists across the National Laboratory Complex to investigate the phenomenon of voltage fade. Unique studies using synchrotron X-ray absorption (XAS) and high-resolution diffraction (HR-XRD) were coupled with nuclear magnetic resonance spectroscopy (NMR), neutron diffraction, high-resolution transmission electron microscopy (HR-TEM), first-principles calculations, molecular dynamics simulations, and detailed electrochemical analyses. These studies demonstrated for the first time the atomic-scale, structure-property relationships that exist between nanoscale inhomogeneities and defects, and the macroscale, electrochemical performance of these layered oxides. These inhomogeneities and defects have been directly correlated with voltage fade and hysteresis, and a model describing these mechanisms has been proposed. This Account gives a brief summary of the findings of this recently concluded, approximately three-year investigation. The interested reader is directed to the extensive body of work cited in the given references for a more comprehensive review of the subject. This article was published in Acc Chem Res and referenced in Journal of Steel Structures & Construction

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords