alexa Re-visiting protein-centric two-tier classification of existing DNA-protein complexes.


Journal of Physical Chemistry & Biophysics

Author(s): Malhotra S, Sowdhamini R

Abstract Share this page

Abstract BACKGROUND: Precise DNA-protein interactions play most important and vital role in maintaining the normal physiological functioning of the cell, as it controls many high fidelity cellular processes. Detailed study of the nature of these interactions has paved the way for understanding the mechanisms behind the biological processes in which they are involved. Earlier in 2000, a systematic classification of DNA-protein complexes based on the structural analysis of the proteins was proposed at two tiers, namely groups and families. With the advancement in the number and resolution of structures of DNA-protein complexes deposited in the Protein Data Bank, it is important to revisit the existing classification. RESULTS: On the basis of the sequence analysis of DNA binding proteins, we have built upon the protein centric, two-tier classification of DNA-protein complexes by adding new members to existing families and making new families and groups. While classifying the new complexes, we also realised the emergence of new groups and families. The new group observed was where β-propeller was seen to interact with DNA. There were 34 SCOP folds which were observed to be present in the complexes of both old and new classifications, whereas 28 folds are present exclusively in the new complexes. Some new families noticed were NarL transcription factor, Z-α DNA binding proteins, Forkhead transcription factor, AP2 protein, Methyl CpG binding protein etc. CONCLUSIONS: Our results suggest that with the increasing number of availability of DNA-protein complexes in Protein Data Bank, the number of families in the classification increased by approximately three fold. The folds present exclusively in newly classified complexes is suggestive of inclusion of proteins with new function in new classification, the most populated of which are the folds responsible for DNA damage repair. The proposed re-visited classification can be used to perform genome-wide surveys in the genomes of interest for the presence of DNA-binding proteins. Further analysis of these complexes can aid in developing algorithms for identifying DNA-binding proteins and their family members from mere sequence information.
This article was published in BMC Bioinformatics and referenced in Journal of Physical Chemistry & Biophysics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 2nd International Conference on Physics
    Aug 28-30, 2017 Brussels, Belgium
  • 5th Global Chemistry Congress
    September 04-06, 2017 London, UK
  • 3rd World Chemistry Conference
    September 11-12, 2017 Dallas, USA
  • Global Conference on Physical Chemistry
    September 18-19, 2017 Dublin, Ireland
  • 2nd International Conference on Applied Chemistry  
    October 16-17, 2017 Toronto, Canada
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version