alexa RNA-Seq vs dual- and single-channel microarray data: sensitivity analysis for differential expression and clustering.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Proteomics & Bioinformatics

Author(s): Srbu A, Kerr G, Crane M, Ruskin HJ

Abstract Share this page

Abstract With the fast development of high-throughput sequencing technologies, a new generation of genome-wide gene expression measurements is under way. This is based on mRNA sequencing (RNA-seq), which complements the already mature technology of microarrays, and is expected to overcome some of the latter's disadvantages. These RNA-seq data pose new challenges, however, as strengths and weaknesses have yet to be fully identified. Ideally, Next (or Second) Generation Sequencing measures can be integrated for more comprehensive gene expression investigation to facilitate analysis of whole regulatory networks. At present, however, the nature of these data is not very well understood. In this paper we study three alternative gene expression time series datasets for the Drosophila melanogaster embryo development, in order to compare three measurement techniques: RNA-seq, single-channel and dual-channel microarrays. The aim is to study the state of the art for the three technologies, with a view of assessing overlapping features, data compatibility and integration potential, in the context of time series measurements. This involves using established tools for each of the three different technologies, and technical and biological replicates (for RNA-seq and microarrays, respectively), due to the limited availability of biological RNA-seq replicates for time series data. The approach consists of a sensitivity analysis for differential expression and clustering. In general, the RNA-seq dataset displayed highest sensitivity to differential expression. The single-channel data performed similarly for the differentially expressed genes common to gene sets considered. Cluster analysis was used to identify different features of the gene space for the three datasets, with higher similarities found for the RNA-seq and single-channel microarray dataset.
This article was published in PLoS One and referenced in Journal of Proteomics & Bioinformatics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords