alexa Robust speech recognition using the modulation spectrogram
Biomedical Sciences

Biomedical Sciences

Journal of Bioengineering & Biomedical Science

Author(s): Nelson Morgan, Steven Greenberg

Abstract Share this page

The performance of present-day automatic speech recognition (ASR) systems is seriously compromised by levels of acoustic interference (such as additive noise and room reverberation) representative of real-world speaking conditions. Studies on the perception of speech by human listeners suggest that recognizer robustness might be improved by focusing on temporal structure in the speech signal that appears as low-frequency (below 16 Hz) amplitude modulations in subband channels following critical-band frequency analysis. A speech representation that emphasizes this temporal structure, the "modulation spectrogram", has been developed. Visual displays of speech produced with the modulation spectrogram are relatively stable in the presence of high levels of background noise and reverberation. Using the modulation spectrogram as a front end for ASR provides a significant improvement in performance on highly reverberant speech. When the modulation spectrogram is used in combination with log-RASTA-PLP (log RelAtive SpecTrAl Perceptual Linear Predictive analysis) performance over a range of noisy and reverberant conditions is significantly improved, suggesting that the use of multiple representations is another promising method for improving the robustness of ASR systems.

  • To read the full article Visit
  • Open Access
This article was published in Speech Commun and referenced in Journal of Bioengineering & Biomedical Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords