alexa Role of accurate mass measurement (+ - 10 ppm) in protein identification strategies employing MS or MS MS and database searching.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Proteomics & Bioinformatics

Author(s): Clauser KR, Baker P, Burlingame AL

Abstract Share this page

Abstract We describe the impact of advances in mass measurement accuracy, +/- 10 ppm (internally calibrated), on protein identification experiments. This capability was brought about by delayed extraction techniques used in conjunction with matrix-assisted laser desorption ionization (MALDI) on a reflectron time-of-flight (TOF) mass spectrometer. This work explores the advantage of using accurate mass measurement (and thus constraint on the possible elemental composition of components in a protein digest) in strategies for searching protein, gene, and EST databases that employ (a) mass values alone, (b) fragment-ion tagging derived from MS/MS spectra, and (c) de novo interpretation of MS/MS spectra. Significant improvement in the discriminating power of database searches has been found using only molecular weight values (i.e., measured mass) of > 10 peptide masses. When MALDI-TOF instruments are able to achieve the +/- 0.5-5 ppm mass accuracy necessary to distinguish peptide elemental compositions, it is possible to match homologous proteins having > 70\% sequence identity to the protein being analyzed. The combination of a +/- 10 ppm measured parent mass of a single tryptic peptide and the near-complete amino acid (AA) composition information from immonium ions generated by MS/MS is capable of tagging a peptide in a database because only a few sequence permutations > 11 AA's in length for an AA composition can ever be found in a proteome. De novo interpretation of peptide MS/MS spectra may be accomplished by altering our MS-Tag program to replace an entire database with calculation of only the sequence permutations possible from the accurate parent mass and immonium ion limited AA compositions. A hybrid strategy is employed using de novo MS/MS interpretation followed by text-based sequence similarity searching of a database.
This article was published in Anal Chem and referenced in Journal of Proteomics & Bioinformatics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords