alexa Role of carotenoids in light-harvesting processes in an antenna protein from the chromophyte Xanthonema debile.


Enzyme Engineering

Author(s): Durchan M, Tich J, Litvn R, louf V, Gardian Z,

Abstract Share this page

Abstract Chromophytes are an important group of microorganisms that contribute significantly to the carbon cycle on Earth. Their photosynthetic capacity depends on efficiency of the light-harvesting system that differs in pigment composition from that of green plants and other groups of algae. Here we employ femtosecond transient absorption spectroscopy to study energy transfer pathways in the main light-harvesting complex of Xanthonema debile, denoted XLH, which contains four carotenoids--diadinoxanthin, heteroxanthin, diatoxanthin, and vaucheriaxanthin--and Chl-a. Overall carotenoid-to-chlorophyll energy transfer efficiency is about 60\%, but energy transfer pathways are excitation wavelength dependent. Energy transfer from the carotenoid S(2) state is active after excitation at both 490 nm (maximum of carotenoid absorption) and 510 nm (red edge of carotenoid absorption), but this channel is significantly more efficient after 510 nm excitation. Concerning the energy transfer pathway from the S(1) state, XLH contains two groups of carotenoids: those that have the S(1) route active (~25\%) and those having the S(1) pathway silent. For a fraction of carotenoids that transfer energy via the S(1) channel, energy transfer is observed after both excitation wavelengths, though energy transfer times are different, yielding 3.4 ps (490 nm excitation) and 1.5 ps (510 nm excitation). This corresponds to efficiencies of the S(1) channel of ~85\% that is rather unusual for a donor-acceptor pair consisting of a noncarbonyl carotenoid and Chl-a. Moreover, major carotenoids in XLH, diadinoxanthin and diatoxanthin, have their S(1) energies in solution lower than the energy of the acceptor state, Q(y) state of Chl-a. Thus, binding of these carotenoids to XLH must tune their S(1) energy to allow for efficient energy transfer. Besides the light-harvesting function, carotenoids in XLH also have photoprotective role; they quench Chl-a triplets via triplet-triplet energy transfer from Chl-a to carotenoid. This article was published in J Phys Chem B and referenced in Enzyme Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

  • Bozena Futoma-Koloch
    C3 component deposition on Salmonella O48 cells characterized by sialylated lipopolysaccharide and different pattern of outer membrane proteins
    PPT Version | PDF Version
  • Amina Dahmani
    PPT Version | PDF Version
  • Sumru Savas
    No relationship between lipoprotein-associated phospholipase A2, proinflammatory cytokines, and neopterin   in Alzheimer's disease
    PPT Version | PDF Version
  • Wail M Hassan
    PPT Version | PDF Version
  • C Cameron Yin
    Role of Immunoglobulin Gene Expression in Acute Myeloid Leukemia
    PPT Version | PDF Version
  • Mapitsi S Thantsha
    In vitro antagonistic effects of Listeria adhesion protein (LAP)-expressing Lactobacillus casei against Listeria monocytogenes and Salmonella Typhimurium Copenhagen
    PPT Version | PDF Version
  • Tibor Tot
    Multiparameter characterization of breast carcinoma: subgross, microscopy, proteins, and genes
    PPT Version | PDF Version
  • Monray Edward Williams
    Molecular validation of putative antimicrobial peptides for improved Human Immunodeficiency Virus diagnostics via HIV protein p24
    PPT Version | PDF Version
  • Kuna Yellamma
    PPT Version | PDF Version
  • Jianbo Wang
    Transcriptome and small RNA gene expression changes in synthetic allohexaploids of
    PPT Version | PDF Version
  • Yosef Yarden
    Classically, the 3’untranslated region (3’UTR) is that region in eukaryotic protein-coding genes from the translation termination codon to the polyA signal. It is transcribed as an integral part of the mRNA encoded by the gene. However, there exists another kind of RNA, which consists of the 3’UTR alone, without all other elements in mRNA such as 5’UTR and coding region. The importance of independent 3’UTR RNA (referred as I3’UTR) was prompted by results of artificially introducing such RNA species into malignant mammalian cells. Since 1991, we found that the middle part of the 3’UTR of the human nuclear factor for interleukin-6 (NF-IL6) or C/EBP gene exerted tumor suppression effect in vivo. Our subsequent studies showed that transfection of C/EBP 3’UTR led to down-regulation of several genes favorable for malignancy and to up-regulation of some genes favorable for phenotypic reversion. Also, it was shown that the sequences near the termini of the C/EBP 3’UTR were important for its tumor suppression activity. Then, the C/EBP 3’UTR was found to directly inhibit the phosphorylation activity of protein kinase CPKC in SMMC-7721, a hepatocarcinoma cell line. Recently, an AU-rich region in the C/EBP 3’UTR was found also to be responsible for its tumor suppression. Recently we have also found evidence that the independent C/EBP 3’UTR RNA is actually exists in human tissues, such as fetal liver and heart, pregnant uterus, senescent fibroblasts etc. Through 1990’s to 2000’s, world scientists found several 3’UTR RNAs that functioned as artificial independent RNAs in cancer cells and resulted in tumor suppression. Interestingly, majority of genes for these RNAs have promoter-like structures in their 3’UTR regions, although the existence of their transcribed products as independent 3’UTR RNAs is still to be confirmed. Our studies indicate that the independent 3’UTR RNA is a novel non-coding RNA species whose function should be the regulation not of the expression of their original mRNA, but of some essential life activities of the cell as a whole.
    PPT Version | PDF Version
  • Shigeomi Horito
    Reconstruction of a transmembrane protein tetraspanin (CD9) into lipid bilayer by interaction of ganglioside GM3 and tetraspanin
    PPT Version | PDF Version
  • Maria A. Miteva
    In silico screening to discover inhibitors of protein-protein interactions targeting angiogenesis
    PPT Version | PDF Version
  • Konrad Sandhoff
    Lysosomal & extracellular degradation of GlcCer: Protein & lipid modifiers
    PPT Version | PDF Version
  • Joan Smith Sonneborn
    Novel anti-retroviral drug targets: Interfering siRNA and mitochondrial TERT expression
    PPT Version | PDF Version

Recommended Conferences

  • 3rd International Conference on Genetic and Protein Engineering
    Nov 02-Nov 03, 2017 Las Vegas, USA

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version