alexa Role of heme oxygenase-carbon monoxide pathway in pathogenesis of cirrhotic cardiomyopathy in the rat.
Anesthesiology

Anesthesiology

Journal of Anesthesia & Clinical Research

Author(s): Liu H, Song D, Lee SS

Abstract Share this page

Abstract The enzyme heme oxygenase (HO), which exists in inducible (HO-1) and constitutive (HO-2) isoforms, degrades heme to biliverdin and CO. CO depresses cardiac contraction via cGMP. We aimed to clarify a possible role for the HO-CO pathway in the pathogenesis of cirrhotic cardiomyopathy in bile duct-ligated rats. Four weeks after bile duct ligation or sham operation, rat ventricles were examined for HO-1 and HO-2 mRNA by RT-PCR and for protein expression by Western blotting. Total HO enzyme activity and cGMP levels were also measured. The effects of a HO inhibitor, zinc protoporphyrin IX (ZnPP), on ventricular cGMP levels and isolated papillary muscle contractility were studied. We found that HO-1 mRNA transcription and protein expression were significantly augmented in cirrhotic hearts compared with sham-operated controls, whereas there was no difference in HO-2 mRNA or protein levels. Total HO activity and cGMP levels were significantly increased in cirrhotic ventricles vs. controls. In cirrhotic ventricles, treatment with ZnPP significantly decreased cGMP production and improved the blunted papillary muscle contractility, whereas it had no effect on control muscles. CO perfusion inhibited papillary muscle contractility, an effect completely blocked by methylene blue and partially blocked by ZnPP. These results indicate that activation of the HO-CO-cGMP pathway is involved in the pathogenesis of cirrhotic cardiomyopathy.
This article was published in Am J Physiol Gastrointest Liver Physiol and referenced in Journal of Anesthesia & Clinical Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords