alexa Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease.
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

Journal of Novel Physiotherapies

Author(s): Marc T Hamilton

Abstract Share this page

It is not uncommon for people to spend one-half of their waking day sitting, with relatively idle muscles. The other half of the day includes the often large volume of nonexercise physical activity. Given the increasing pace of technological change in domestic, community, and workplace environments, modern humans may still not have reached the historical pinnacle of physical inactivity, even in cohorts where people already do not perform exercise. Our purpose here is to examine the role of sedentary behaviors, especially sitting, on mortality, cardiovascular disease, type 2 diabetes, metabolic syndrome risk factors, and obesity. Recent observational epidemiological studies strongly suggest that daily sitting time or low nonexercise activity levels may have a significant direct relationship with each of these medical concerns. There is now a need for studies to differentiate between the potentially unique molecular, physiologic, and clinical effects of too much sitting (inactivity physiology) separate from the responses caused by structured exercise (exercise physiology). In theory, this may be in part because nonexercise activity thermogenesis is generally a much greater component of total energy expenditure than exercise or because any type of brief, yet frequent, muscular contraction throughout the day may be necessary to short-circuit unhealthy molecular signals causing metabolic diseases. One of the first series of controlled laboratory studies providing translational evidence for a molecular reason to maintain high levels of daily low-intensity and intermittent activity came from examinations of the cellular regulation of skeletal muscle lipoprotein lipase (LPL) (a protein important for controlling plasma triglyceride catabolism, HDL cholesterol, and other metabolic risk factors). Experimentally reducing normal spontaneous standing and ambulatory time had a much greater effect on LPL regulation than adding vigorous exercise training on top of the normal level of nonexercise activity. Those studies also found that inactivity initiated unique cellular processes that were qualitatively different from the exercise responses. In summary, there is an emergence of inactivity physiology studies. These are beginning to raise a new concern with potentially major clinical and public health significance: the average nonexercising person may become even more metabolically unfit in the coming years if they sit too much, thereby limiting the normally high volume of intermittent nonexercise physical activity in everyday life. Thus, if the inactivity physiology paradigm is proven to be true, the dire concern for the future may rest with growing numbers of people unaware of the potential insidious dangers of sitting too much and who are not taking advantage of the benefits of maintaining nonexercise activity throughout much of the day.

This article was published in Diabetes and referenced in Journal of Novel Physiotherapies

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 5th International Conference on Physiotherapy
    November 27-28, 2017 Dubai, UAE

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords