alexa Role of macrophage oxidative burst in the action of anthrax lethal toxin.
General Science

General Science

Journal of Bioterrorism & Biodefense

Author(s): Hanna PC, Kruskal BA, Ezekowitz RA, Bloom BR, Collier RJ

Abstract Share this page

Abstract BACKGROUND: Major symptoms and death from systemic Bacillus anthracis infections are mediated by the action of the pathogen's lethal toxin on host macrophages. High levels of the toxin are cytolytic to macrophages, whereas low levels stimulate these cells to produce cytokines (interleukin-1 beta and tumor necrosis factor-alpha), which induce systemic shock and death. MATERIALS AND METHODS: Experiments were performed to assess the possibility that the oxidative burst may be involved in one or both of lethal toxin's effects on macrophages. Toximediated cell lysis, superoxide anion and cytokine production were measured. Effects of antioxidants and macrophage mutations were examined. RESULTS: RAW264.7 murine macrophages treated with high levels of toxin released large amounts of superoxide anion, beginning at about 1 hr, which correlates with the onset of cytolysis. Cytolysis could be blocked with various exogenous antioxidants or with N-acetyl-L-cysteine and methionine, which promote production of the endogenous antioxidant, glutathione. Mutant murine macrophage lines deficient in production of reactive oxygen intermediates (ROIs) were relatively insensitive to the lytic effects of the toxin, whereas a line with increased oxidative burst potential showed elevated sensitivity. Also, cultured blood monocyte-derived macrophages from a patient with Chronic Granulomatous Disease, a disorder in which the phagocyte's oxidative burst is disabled, were totally resistant to toxin, in contrast to control monocytes. CONCLUSIONS: These results imply that the cytolytic effect of the toxin is mediated by ROIs. Additionally, cytokine production and consequent pathologies showed partial dependence on macrophage ROIs. Antioxidants moderately inhibited toxin-induced cytokine production in vitro, and BALB/c mice pretreated with N-acetyl-L-cysteine or mepacrine showed partial protection against lethal toxin. Thus ROIs are involved in both the cytolytic action of anthrax lethal toxin and the overall pathologic process in vivo.
This article was published in Mol Med and referenced in Journal of Bioterrorism & Biodefense

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords