alexa Role of magnesium in patho-physiological processes and the clinical utility of magnesium ion selective electrodes.
Cardiology

Cardiology

Journal of Clinical & Experimental Cardiology

Author(s): Altura BM, Altura BT, Altura BM, Altura BT

Abstract Share this page

Abstract Magnesium ions (Mg2+) are pivotal in the transfer, storage and utilization of energy; Mg2+ regulates and catalyzes some 300-odd enzyme systems in mammals. The intracellular level of free Mg2+ ([Mg2+]i) regulates intermediary metabolism, DNA and RNA synthesis and structure, cell growth, reproduction, and membrane structure. Mg2+ has numerous physiological roles among which are control of neuronal activity, cardiac excitability, neuromuscular transmission, muscular contraction, vasomotor tone, blood pressure and peripheral blood flow. Mg2+ modulates and controls cell Ca2+ entry and Ca2+ release from sarcoplasmic and endoplasmic reticular membranes. Since the turn of this century, there has been a steady and progressive decline of dietary Mg intake to where much of the Western World population is ingesting less than an optimum RDA. Geographic regions low in soil and water Mg demonstrate increased cardiovascular morbidity and mortality. Dietary deficiency of Mg2+ results in loss of cellular K+ and gain of cellular Na+ and calcium ions (Ca2+). Blood normally contains Mg2+ bound to proteins, Mg2+ complexed to small anion ligands and free ionized Mg2+ (IMg2+). Most clinical laboratories only now assess the total Mg, which consists of all three Mg fractions. Estimation of the IMg2+ level in serum or plasma by analysis of ultrafiltrates (complexed Mg + IMg2+) is somewhat unsatisfactory, as the methods employed do not distinguish the truly ionized form from Mg2+ bound to organic and inorganic anions. Because the levels of these ligands can vary significantly in numerous pathological states, it is desirable to directly measure the levels of IMg2+ in complex matrices such as whole blood, plasma and serum. Using novel ion selective electrodes (ISE's), we have found that there is virtually no difference in IMg2+, irrespective of whether one samples whole blood, plasma or serum. These data demonstrate that the mean concentration of IMg2+ in blood is about 600 mumoles/litre (0.54-0.65 mmol/L, 95\% Cl); 65-72\% of total Mg being free or biologically-active Mg2+. Use of the NOVA and KONE ISE's for IMg2+ on plasma and sera from patients with a variety of pathophysiologic and disease syndromes (e.g., long-term renal transplants, liver transplants, during and before cardiac surgery, ischemic heart disease [IHD], headaches, pregnancy, neonatal period, non-insulin dependent diabetes (NIDDM), end-stage renal disease [ESRD], hemodialyse [HEM], and continuous ambulatory peritoneal dialysis (CAPD), hypertension, myocardial infarction [AMI] and after excessive dietary intake of Mg), has revealed interesting data. The results indicate that long-term renal transplant patients, headache, pregnant, NIDDM, ESRD, HEM, CAPD, AMI, hypertensive, and IHD subjects exhibit, on the average significant depression in IMg2+ but not TMg. Use of 31P-NMR spectroscopy on red blood cells, from several of these disease states, to assess free intracellular Mg ([Mg2+]i demonstrates a high correlation (r = 0.5-0.8) between IMg2+ and [Mg2+]i. Increased dietary load of Mg, for only 6 days, in human volunteers, resulted in significant elevations in serum IMg2+ but not TMg. Correlations between the clinical course of several of the above disease syndromes and the fall in IMg2+ and [Mg2+]i were found. The ICa2+/IMg2+ ratio appears, from our data, to be an important guide for signs of peripheral vasoconstriction, ischemia or spasm and possibly atherogenesis. Overall, our data point to important uses for ISE's for IMg2+ in the diagnosis and treatment of disease states.
This article was published in Scand J Clin Lab Invest Suppl and referenced in Journal of Clinical & Experimental Cardiology

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords