alexa Role of NADPH oxidase in arsenic-induced reactive oxygen species formation and cytotoxicity in myeloid leukemia cells.


Chemotherapy: Open Access

Author(s): Chou WC, Jie C, Kenedy AA, Jones RJ, Trush MA,

Abstract Share this page

Abstract Arsenic has played a key medicinal role against a variety of ailments for several millennia, but during the past century its prominence has been displaced by modern therapeutics. Recently, attention has been drawn to arsenic by its dramatic clinical efficacy against acute promyelocytic leukemia. Although toxic reactive oxygen species (ROS) induced in cancer cells exposed to arsenic could mediate cancer cell death, how arsenic induces ROS remains undefined. Through the use of gene expression profiling, interference RNA, and genetically engineered cells, we report here that NADPH oxidase, an enzyme complex required for the normal antibacterial function of white blood cells, is the main target of arsenic-induced ROS production. Because NADPH oxidase enzyme activity can also be stimulated by phorbol myristate acetate, a synergism between arsenic and the clinically used phorbol myristate acetate analog, bryostatin 1, through enhanced ROS production can be expected. We show that this synergism exists, and that the use of very low doses of both arsenic and bryostatin 1 can effectively kill leukemic cells. Our findings pinpoint the arsenic target of ROS production and provide a conceptual basis for an anticancer regimen.
This article was published in Proc Natl Acad Sci U S A and referenced in Chemotherapy: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version