alexa Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal.
Materials Science

Materials Science

Research & Reviews: Journal of Material Sciences

Author(s): Isao Nakamura, Nobuaki Negishi, Shuzo Kutsuna, Tatsuhiko Ihara, Shinichi Sugihara

Abstract Share this page

The photocatalytic activity for NO removal under an oxidative atmosphere has been studied over commercial TiO2 and plasma-treated TiO2 powders. By the plasma treatment, the photocatalytic activity for NO removal appeared in the visible light region up to 600 nm without a decrease in the ultraviolet light activity. It was found that the NO was removed as nitrate (NO3−) by photocatalytic oxidation over the TiO2 powders, where NO3− was accumulated. No difference in the crystal structure, the crystallinity, and the specific surface area was observed between the raw TiO2 and the plasma-treated TiO2 photocatalysts. In electron spin resonance (ESR) measurements, a sharp signal at g=2.004, which was identified as the electrons trapped on oxygen vacancies, was detected only for plasma-treated TiO2 under visible light irradiation. The saturated intensity of the ESR signal at g=2.004 was proportional to the removal percentage of nitrogen oxides, suggesting that the number of trapped electrons determined the activity for the photocatalytic oxidation of NO to NO3−. The appearance of the visible light activity in the plasma-treated TiO2 photocatalyst was ascribed to the newly formed oxygen vacancy state between the valence and the conduction bands in the TiO2 band structure.

This article was published in J MolCatal A and referenced in Research & Reviews: Journal of Material Sciences

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords