alexa Role of the amygdala in fear extinction measured with potentiated startle.


Autism-Open Access

Author(s): Davis M, Walker DL, Myers KM

Abstract Share this page

Abstract Although much is now known about the neural basis of excitatory fear conditioning, much less is known about the neural basis of inhibitory conditioning. One type of inhibitory conditioning is extinction, a process in which stimuli that elicit fear by virtue of previous associations with aversive stimuli such as shock (excitatory fear conditioning) are now presented in the absence of the aversive stimuli (extinction training). As a result, the ability of the conditioned stimulus to elicit fear gradually diminishes. Extinction is different from forgetting and does not reflect an erasure of the original fear memory. Instead, extinction is an active form of inhibitory learning that competes with excitatory fear conditioning. Infusions into the amygdala (a brain area essential for excitatory fear conditioning) of either NMDA receptor antagonists or inhibitors of the NMDA-receptor-linked mitogen-activated protein kinase cascade block extinction learning. Conversely, the NMDA receptor agonist D-cycloserine facilitates extinction after either systemic administration or intra-amygdala infusion. Because therapeutic interventions based on extinction procedures are commonly used to treat fear disorders, and because D-cycloserine is a widely available and safe compound, D-cycloserine or similar agents might be usefully combined with traditional extinction-based approaches in the treatment of clinical fear.
This article was published in Ann N Y Acad Sci and referenced in Autism-Open Access

Recommended Conferences

  • 3rd International Conference on Autism
    Aug 21-22, 2017 Los Angeles, USA
  • 3rd International Conference on Epilepsy and Treatment
    September 01-17 Brussels, Belgium

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version