alexa Rosiglitazone induces caveolin-1 by PPARgamma-dependent and PPRE-independent mechanisms: the role of EGF receptor signaling and its effect on cancer cell drug resistance.
Molecular Biology

Molecular Biology

Journal of Cytology & Histology

Author(s): Tencer L, Burgermeister E, Ebert MP, Liscovitch M

Abstract Share this page

Abstract BACKGROUND: Caveolin-1, a key component of plasma membrane caveolae, has been implicated in the regulation of cancer cell growth and survival. Peroxisome proliferator-activated receptor-gamma (PPARgamma) is a ligand-activated nuclear receptor which plays a pivotal role in many cellular processes. Activation of PPARgamma by its ligand rosiglitazone upregulates caveolin-1 mRNA and protein in human carcinoma cells. MATERIALS AND METHODS: We have used specific signaling inhibitors to dissect the mechanisms of caveolin-1 mRNA and protein induction by rosiglitazone, determined by RT-PCR and Western blotting, respectively. ROS generation was measured by flow cytometry and cell survival was determined by the MTT assay. RESULTS: We show that in HT-29 human colon cancer cells the induction ofcaveolin-1 by rosiglitazone is inhibited by the EGF receptor (EGFR) blocker AG1478. Moreover, rosiglitazone stimulates EGFR phosphorylation, while direct activation of EGFR by EGF up-regulates caveolin-1 mRNA. Inhibitors of Src and the Mek1-Erk1/2 and p38 MAP kinase pathways also inhibit up-regulation of caveolin-1 by rosiglitazone. Furthermore, rosiglitazone stimulates formation of superoxide anions, whereas induction of caveolin-1 expression by rosiglitazone is attenuated by the antioxidant N-acetyl-cysteine. Finally, rosiglitazone increases the resistance of HT-29 cells to doxorubicin and to hydrogen peroxide. The caveolin-1 gene promoter lacks a canonical PPARgamma response element (PPRE) and a PPRE-reporter construct is not sensitive to EGF or EGFR inhibition. CONCLUSION: Our findings indicate that up-regulation of caveolin-1 by rosiglitazone requires superoxide formation and the activation of Src, EGFR, and the Mek1-Erk1/2 and p38 MAP kinase pathways. We suggest a novel mode of action of PPARgamma ligands in the regulation of caveolin-1, and possibly other genes devoid of a PPRE in their promoters, which involves the coordinate activation of PPARgamma and intracellular signaling pathways.
This article was published in Anticancer Res and referenced in Journal of Cytology & Histology

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords