alexa Rotational actuators based on carbon nanotubes.


Journal of Applied Mechanical Engineering

Author(s): Fennimore AM, Yuzvinsky TD, Han WQ, Fuhrer MS, Cumings J,

Abstract Share this page

Abstract Nanostructures are of great interest not only for their basic scientific richness, but also because they have the potential to revolutionize critical technologies. The miniaturization of electronic devices over the past century has profoundly affected human communication, computation, manufacturing and transportation systems. True molecular-scale electronic devices are now emerging that set the stage for future integrated nanoelectronics. Recently, there have been dramatic parallel advances in the miniaturization of mechanical and electromechanical devices. Commercial microelectromechanical systems now reach the submillimetre to micrometre size scale, and there is intense interest in the creation of next-generation synthetic nanometre-scale electromechanical systems. We report on the construction and successful operation of a fully synthetic nanoscale electromechanical actuator incorporating a rotatable metal plate, with a multi-walled carbon nanotube serving as the key motion-enabling element. This article was published in Nature and referenced in Journal of Applied Mechanical Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version