alexa Saccular otolith mass asymmetry in adult flatfishes
Agri and Aquaculture

Agri and Aquaculture

Fisheries and Aquaculture Journal

Author(s): D V LYCHAKOV

Abstract Share this page

A dimensionless measure of otolith mass asymmetry, w, was calculated as the difference between the masses of the right and left paired otoliths divided by average otolith mass. Saccular otolith mass asymmetry was studied in eight flatfish species (110 otolith pairs) and compared with data from a previously published study on roundfishes. As in the case of symmetrical fishes, the absolute value of w in flatfishes does not depend on fish length and otolith growth rate, although otolith mass and the absolute value of otolith mass difference are correlated with fish length. The values of w were between 02 and þ02 in 964% of flatfishes studied. The mean S.E. value of w in flatfishes was significantly larger than in standard bilaterally symmetrical marine fishes (‘roundfishes’), respectively 0070 0006 and 0040 0006. The most prominent distinction is the existence of downside prevalence of saccular otolith mass in flatfishes, which contrasts with no right–left prevalence in roundfishes found in a previous study. In the righteyed flatfishes (Soleidae), the left saccular otoliths are heavier than the right otoliths. In the lefteyed flatfishes (Bothidae and Citharidae), the right saccular otoliths are heavier than the left otoliths. Not all flatfishes, however, fit in this design: 118% of flatfishes studied had the heavier saccular otoliths in the upside labyrinth and 54% of flatfishes had no otolith mass asymmetry (within the accuracy of the analysis). At the same time, the more mobile flatfishes (bothids and citharids) have more symmetrical and, hence, more precisely organized saccular otolith organs than the bottom-associated flatfishes (soleids). It is possible to assume that the value of the otolith asymmetry is not only correlated with flatfish placement in a particular family, or position of eyes, but also may correlate with general aspects of their ecology. Mathematical modelling indicated that for most flatfishes one-side saccular prevalence had no substantial significance for sound processing. On the other hand, calculations showed that 49% of flatfishes (but only 145% of roundfishes) have jwj which exceed the critical level and, in principle, could sense the difference between the static displacement of the large and small paired otoliths. At that, the number of the soleids that could sense this difference is greater than the number of the bothids and citharids, 84 and 27%, respectively. # 2008 The A

This article was published in Journal of Fish Biology and referenced in Fisheries and Aquaculture Journal

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords