alexa Salt induces myocardial and renal fibrosis in normotensive and hypertensive rats.


Journal of Hypertension: Open Access

Author(s): Yu HC, Burrell LM, Black MJ, Wu LL, Dilley RJ,

Abstract Share this page

Abstract BACKGROUND: The detrimental effects of high dietary salt intake may not only involve effects on blood pressure and organ hypertrophy but also lead to tissue fibrosis independently of these factors. METHODS AND RESULTS: The effect of a normal (1\%) or high (8\%) sodium chloride diet on myocardial and renal fibrosis was assessed by quantitative histomorphometry in spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto rats (WKYs). The effect of salt on transforming growth factor-beta1 (TGF-beta1) gene expression was assessed by Northern blot hybridization. A high-salt diet from 8 to 16 weeks of age resulted in increased blood pressure and left ventricular and renal hypertrophy in both WKYs and SHRs. Marked interstitial fibrosis was demonstrated in the left ventricle (LV), glomeruli, and renal tubules and in intramyocardial arteries and arterioles but not in the right ventricle. The collagen volume fraction increased significantly after high-salt diet in the LV, intramyocardial arteries and arterioles, glomeruli, and peritubular areas in both WKYs and SHRs. In the kidneys, glomerular and peritubular type IV collagen was also increased. There was overexpression of TGF-beta1 mRNA in the LV and kidneys in both rat strains after a high-salt diet (all P<0.001). CONCLUSIONS: High dietary salt led to widespread fibrosis and increased TGF-beta1 in the heart and kidney in normotensive and hypertensive rats. These results suggest a specific effect of dietary salt on fibrosis, possibly via TGF-beta1-dependent pathways, and further suggest that excessive salt intake may be an important direct pathogenic factor for cardiovascular disease.
This article was published in Circulation and referenced in Journal of Hypertension: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version