alexa Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes.
Pediatrics

Pediatrics

Journal of Neonatal Biology

Author(s): Kang MI, Kobayashi A, Wakabayashi N, Kim SG, Yamamoto M

Abstract Share this page

Abstract Transcription factor Nrf2 regulates basal and inducible expression of phase 2 proteins that protect animal cells against the toxic effects of electrophiles and oxidants. Under basal conditions, Nrf2 is sequestered in the cytoplasm by Keap1, a multidomain, cysteinerich protein that is bound to the actin cytoskeleton. Keap1 acts both as a repressor of the Nrf2 transactivation and as a sensor of phase 2 inducers. Electrophiles and oxidants disrupt the Keap1-Nrf2 complex, resulting in nuclear accumulation of Nrf2, where it enhances the transcription of phase 2 genes via a common upstream regulatory element, the antioxidant response element. Reporter cotransfection-transactivation analyses with a series of Keap1 deletion mutants revealed that in the absence of the double glycine repeat domain Keap1 does not bind to Nrf2. In addition, deletion of either the intervening region or the C-terminal region also abolished the ability of Keap1 to sequester Nrf2, indicating that all of these domains contribute to the repressor activity of Keap1. Immunocytochemical and immunoprecipitation analyses demonstrated that Keap1 associates with actin filaments in the cytoplasm through its double glycine repeat domain. Importantly, disruption of the actin cytoskeleton promotes nuclear entry of an Nrf2 reporter protein. The actin cytoskeleton therefore provides scaffolding that is essential for the function of Keap1, which is the sensor for oxidative and electrophilic stress.
This article was published in Proc Natl Acad Sci U S A and referenced in Journal of Neonatal Biology

Relevant Expert PPTs

Recommended Conferences

  • 20th International Conference on Neonatology and Perinatology
    December 04-06, 2017 Madrid, Spain

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords