alexa Scaling maximal oxygen uptake to predict cycling time-trial performance in the field: a non-linear approach.
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

Journal of Sports Medicine & Doping Studies

Author(s): Nevill AM, Jobson SA, Palmer GS, Olds TS

Abstract Share this page

Abstract The purpose of the present article is to identify the most appropriate method of scaling VO2max for differences in body mass when assessing the energy cost of time-trial cycling. The data from three time-trial cycling studies were analysed (N = 79) using a proportional power-function ANCOVA model. The maximum oxygen uptake-to-mass ratio found to predict cycling speed was VO2max(m)(-0.32) precisely the same as that derived by Swain for sub-maximal cycling speeds (10, 15 and 20 mph). The analysis was also able to confirm a proportional curvilinear association between cycling speed and energy cost, given by (VO2max(m)(-0.32))0.41. The model predicts, for example, that for a male cyclist (72 kg) to increase his average speed from 30 km h(-1) to 35 km h(-1), he would require an increase in VO2max from 2.36 l min(-1) to 3.44 l min(-1), an increase of 1.08 l min(-1). In contrast, for the cyclist to increase his mean speed from 40 km h(-1) to 45 km h(-1), he would require a greater increase in VO2max from 4.77 l min(-1) to 6.36 l min(-1), i.e. an increase of 1.59 l min(-1). The model is also able to accommodate other determinants of time-trial cycling, e.g. the benefit of cycling with a side wind (5\% faster) compared with facing a predominately head/tail wind (P<0.05). Future research could explore whether the same scaling approach could be applied to, for example, alternative measures of recording power output to improve the prediction of time-trial cycling performance. This article was published in Eur J Appl Physiol and referenced in Journal of Sports Medicine & Doping Studies

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords