alexa Science in the art of the master Bizen potter.
Microbiology

Microbiology

Journal of Microbial & Biochemical Technology

Author(s): Kusano Y, Fukuhara M, Takada J, Doi A, Ikeda Y, , Kusano Y, Fukuhara M, Takada J, Doi A, Ikeda Y,

Abstract Share this page

Abstract Bizen stoneware, with the characteristic reddish hidasuki or "fire-marked" pattern, is one of Japan's best known traditional ceramic works of art. The means of creating and controlling the various hues of the hidasuki pattern has remained a mystery to outsiders for about a thousand years; the methods were known only to master potters who served under generations of master potters before them. In this Account, we present the results of 30 years of study in which we investigated the microstructure and color-formation process in Bizen stoneware. We discovered that the hidasuki pattern results from the precipitation of corundum (alpha-Al(2)O(3)) and the subsequent epitaxial growth of hematite (alpha-Fe(2)O(3)) around it in a approximately 50-microm-thick liquid specifically formed in the ceramic surface. The epitaxial composites include hexagonal plate-like alpha-Fe(2)O(3)/alpha-Al(2)O(3)/alpha-Fe(2)O(3) sandwiched particles and also surprisingly beautiful flower-like crystals, centered by hexagonal corundum crystals and decorated by several hexagonal hematite petal crystals. Bizen stoneware is produced from a unique clay that can only be mined from the Bizen area of Okayama Prefecture, Japan. The clay has an unusually high Fe content compared with the traditional porcelain clay, as well as Si, Ca, Mg, and Na. Prior to firing, the Bizen works are wrapped in rice straw that was used originally as a separator to prevent adhesion. The hidasuki pattern only appears where the rice straw is in direct contact with the clay; the rice straw supplies potassium, which reduces the melting point of the ceramic surface, thereby converting the contact area into a site for these reactions to take place. The effect is almost accidental and is produced without the aid of any artificial glazing and enameling. An unexpected variety of substances, including metallic iron coated by graphite, Fe(3)P, and epsilon-Fe(2)O(3), were also found to appear at low oxygen partial pressures. Many of the techniques used by master potters are passed down through an apprenticeship system; an unfortunate consequence is that they are poorly documented. Moreover, the masters of these techniques are often unaware of the underlying chemical reactions that take place. Chemical studies of traditional processes can provide new inspiration to artists, allowing them to control the various factors and thus produce new works, and perhaps new functional materials. We studied the process of creating Bizen stoneware and then mimicked the color-producing process under controlled laboratory conditions, demonstrating the possibilities of the endeavor. This article was published in Acc Chem Res and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords