alexa Screening of 397 chemicals and development of a quantitative structure--activity relationship model for androgen receptor antagonism.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Steroids & Hormonal Science

Author(s): Vinggaard AM, Niemel J, Wedebye EB, Jensen GE

Abstract Share this page

Abstract We have screened 397 chemicals for human androgen receptor (AR) antagonism by a sensitive reporter gene assay to generate data for the development of a quantitative structure-activity relationship (QSAR) model. A total of 523 chemicals comprising data on 292 chemicals from our laboratory and data on 231 chemicals from the literature constituted the training set for the model. The chemicals were selected with the purpose of representing a wide range of chemical structures (e.g., organochlorines and polycyclic aromatic hydrocarbons) and various functions (e.g., natural hormones, pesticides, plastizicers, plastic additives, brominated flame retardants, and roast mutagens). In addition, the intention was to obtain an equal number of positive and negative chemicals. Among our own data for the training set, 45.7\% exhibited inhibitory activity against the transcriptional activity induced by the synthetic androgen R1881. The MultiCASE expert system was used to construct a QSAR model for AR antagonizing potential. A "5 Times, 2-Fold 50\% Cross Validation" of the model showed a sensitivity of 64\%, a specificity of 84\%, and a concordance of 76\%. Data for 102 chemicals were generated for an external validation of the model resulting in a sensitivity of 57\%, a specificity of 98\%, and a concordance of 92\% of the model. The model was run on a set of 176103 chemicals, and 47\% were within the domain of the model. Approximately 8\% of chemicals was predicted active for AR antagonism. We conclude that the predictability of the global QSAR model for this end point is good. This most comprehensive QSAR model may become a valuable tool for screening large numbers of chemicals for AR antagonism. This article was published in Chem Res Toxicol and referenced in Journal of Steroids & Hormonal Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords