alexa Segregation of micron-scale membrane sub-domains in live murine sperm.
Molecular Biology

Molecular Biology

Journal of Cytology & Histology

Author(s): Selvaraj V, Asano A, Buttke DE, McElwee JL, Nelson JL,

Abstract Share this page

Abstract Lipid rafts, membrane sub-domains enriched in sterols and sphingolipids, are controversial because demonstrations of rafts have often utilized fixed cells. We showed in living sperm that the ganglioside G(M1) localized to a micron-scale membrane sub-domain in the plasma membrane overlying the acrosome. We investigated four models proposed for membrane sub-domain maintenance. G(M1) segregation was maintained in live sperm incubated under non-capacitating conditions, and after sterol efflux, a membrane alteration necessary for capacitation. The complete lack of G(M1) diffusion to the post-acrosomal plasma membrane (PAPM) in live cells argued against the transient confinement zone model. However, within seconds after cessation of sperm motility, G(M1) dramatically redistributed several microns from the acrosomal sub-domain to the post-acrosomal, non-raft sub-domain. This redistribution was not accompanied by movement of sterols, and was induced by the pentameric cholera toxin subunit B (CTB). These data argued against a lipid-lipid interaction model for sub-domain maintenance. Although impossible to rule out a lipid shell model definitively, mice lacking caveolin-1 maintained segregation of both sterols and G(M1), arguing against a role for lipid shells surrounding caveolin-1 in sub-domain maintenance. Scanning electron microscopy of sperm freeze-dried without fixation identified cytoskeletal structures at the sub-domain boundary. Although drugs used to disrupt actin and intermediate filaments had no effect on the segregation of G(M1), we found that disulfide-bonded proteins played a significant role in sub-domain segregation. Together, these data provide an example of membrane sub-domains extreme in terms of size and stability of lipid segregation, and implicate a protein-based membrane compartmentation mechanism. Copyright 2005 Wiley-Liss, Inc. This article was published in J Cell Physiol and referenced in Journal of Cytology & Histology

Relevant Expert PPTs

Relevant Speaker PPTs

  • Mapitsi S Thantsha
    In vitro antagonistic effects of Listeria adhesion protein (LAP)-expressing Lactobacillus casei against Listeria monocytogenes and Salmonella Typhimurium Copenhagen
    PPT Version | PDF Version
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version