alexa Selecting high-dimensional mixed graphical models using minimal AIC or BIC forests.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Health & Medical Informatics

Author(s): Edwards D, de Abreu GC, Labouriau R

Abstract Share this page

Abstract BACKGROUND: Chow and Liu showed that the maximum likelihood tree for multivariate discrete distributions may be found using a maximum weight spanning tree algorithm, for example Kruskal's algorithm. The efficiency of the algorithm makes it tractable for high-dimensional problems. RESULTS: We extend Chow and Liu's approach in two ways: first, to find the forest optimizing a penalized likelihood criterion, for example AIC or BIC, and second, to handle data with both discrete and Gaussian variables. We apply the approach to three datasets: two from gene expression studies and the third from a genetics of gene expression study. The minimal BIC forest supplements a conventional analysis of differential expression by providing a tentative network for the differentially expressed genes. In the genetics of gene expression context the method identifies a network approximating the joint distribution of the DNA markers and the gene expression levels. CONCLUSIONS: The approach is generally useful as a preliminary step towards understanding the overall dependence structure of high-dimensional discrete and/or continuous data. Trees and forests are unrealistically simple models for biological systems, but can provide useful insights. Uses include the following: identification of distinct connected components, which can be analysed separately (dimension reduction); identification of neighbourhoods for more detailed analyses; as initial models for search algorithms with a larger search space, for example decomposable models or Bayesian networks; and identification of interesting features, such as hub nodes.
This article was published in BMC Bioinformatics and referenced in Journal of Health & Medical Informatics

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords