alexa Selection of single-stranded DNA molecules that bind and inhibit human thrombin.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ

Abstract Share this page

Abstract Aptamers are double-stranded DNA or single-stranded RNA molecules that bind specific molecular targets. Large randomly generated populations can be enriched in aptamers by in vitro selection and polymerase chain reaction. But so far single-stranded DNA has not been investigated for aptamer properties, nor has a target protein been considered that does not interact physiologically with nucleic acid. Here we describe the isolation of single-stranded DNA aptamers to the protease thrombin of the blood coagulation cascade and report binding affinities in the range 25-200 nM. Sequence data from 32 thrombin aptamers, selected from a pool of DNA containing 60 nucleotides of random sequence, displayed a highly conserved 14-17-base region. Several of these aptamers at nanomolar concentrations inhibited thrombin-catalysed fibrin-clot formation in vitro using either purified fibrinogen or human plasma. This article was published in Nature and referenced in Journal of Nanomedicine & Nanotechnology

Recommended Conferences

  • Nano Congress for Next Generation
    August 31-September 01, 2017 Brussels,Belgium
  • Graphene & 2D Materials
    September 14-15, 2017 Edinburgh, Scotland
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords