alexa Self-assembled micelles of monosialogangliosides as nanodelivery vehicles for taxanes.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Leonhard V, Alasino RV, Bianco ID, Garro AG, Heredia V,

Abstract Share this page

Abstract We demonstrate herein that taxanes (paclitaxel (Ptx) and docetaxel (Dtx)) can be spontaneously loaded into ganglioside nanomicelles. The efficiency of gangliosides to solubilize taxanes was highly dependent on their self-aggregating structure. Thus, GM3 that forms unilamellar vesicles was less efficient to solubilize taxanes than gangliosides that form micelles (i.e. GM1 and GM2). Sialic acid cyclization of GM1 by acid treatment led to an important reduction in its capacity to solubilize taxanes, as also did the replacement of the fatty acid of ceramide by a dicholoracetyl group. Water solubility of paclitaxel (Ptx) is less than 1 μg mL⁻¹ and increased up to 6.3mg.mL⁻¹ upon its association with GM1 micelles. The incorporation of Ptx in GM1 reached an optimum at GM1/Ptx 20/1 molar ratio when performed at room temperature. An increase in the solubilization capacity of GM1 micelles was observed upon dehydration of their polar head group by pre-treatment at 55 °C. Loading of Ptx into the micelle induced a structural reorganization that led to an important protection of Ptx reducing its hydrolysis at alkaline pH. Diffusion of either GM1 or Ptx was restricted upon mixed-micelle formation indicating that they are kinetically more stable than pure ganglioside micelles. X-ray powder diffraction of lyophilized GM1 micelles with Ptx showed a change in their internal structure from a crystalline state to completely amorphous. Taxane-ganglioside mixed micelles were stable in solution for at least 4months and also upon freeze-thawing or lyophilization-solubilization cycles. Upon mixing with human blood constituents, GM1/Ptx micelles did not induce hemolysis or platelet aggregation and were spontaneously covered with human serum albumin (HSA), which could aid in the delivery of micellar content to tumors. In vitro antimitotic activity of GM1/Ptx mixed micelles was qualitatively equivalent to that of free drug in DMSO solution. Copyright © 2012 Elsevier B.V. All rights reserved. This article was published in J Control Release and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

  • Nano Congress for Next Generation
    August 31-September 01, 2017 Brussels,Belgium
  • Graphene & 2D Materials
    September 14-15, 2017 Edinburgh, Scotland
  • Graphene & 2D Materials
    November 6-7, 2017 Frankfurt, Germany
  • World Congress on Nanoscience and Nano Technology
    October 16-17, 2017 Dubai, UAE
  • World Medical Nanotechnology Congress
    October 18-19, 2017 Osaka, Japan
  • Nanoscienceand Molecular Nanotechnology
    Nov 06-08, 2017 Frankfurt, Germany
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version