alexa Self-Learning Neural Controller for Hybrid Power Management Using Neuro-Dynamic Programming
Engineering

Engineering

Advances in Automobile Engineering

Author(s): Rajit Johri

Abstract Share this page

A supervisory controller strategy for a hybrid vehicle coordinates the operation of the two power sources onboard of a vehicle to maximize objectives like fuel economy. In the past, various control strategies have been developed using heuristics as well as optimal control theory. The Stochastic Dynamic Programming (SDP) has been previously applied to determine implementable optimal control policies for discrete time dynamic systems whose states evolve according to given transition probabilities. However, the approach is constrained by the curse of dimensionality, i.e. an exponential increase in computational effort with increase in system state space, faced by dynamic programming based algorithms. This paper proposes a novel approach capable of overcoming the curse of dimensionality and solving policy optimization for a system with very large design state space. We propose developing a supervisory controller for hybrid vehicles based on the principles of reinforcement learning and neuro-dynamic programming, whereby the cost-to-go function is approximated using a neural network. The controller learns and improves its performance over time. The simulation results obtained for a series hydraulic hybrid vehicle over a driving schedule demonstrate the effectiveness of the proposed technique.

This article was published in SAE international and referenced in Advances in Automobile Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords