alexa Self-powered microneedle-based biosensors for pain-free high-accuracy measurement of glycaemia in interstitial fluid.


Biosensors Journal

Author(s): Strambini LM, Longo A, Scarano S, Prescimone T, Palchetti I, , Strambini LM, Longo A, Scarano S, Prescimone T, Palchetti I,

Abstract Share this page

Abstract In this work a novel self-powered microneedle-based transdermal biosensor for pain-free high-accuracy real-time measurement of glycaemia in interstitial fluid (ISF) is reported. The proposed transdermal biosensor makes use of an array of silicon-dioxide hollow microneedles that are about one order of magnitude both smaller (borehole down to 4µm) and more densely-packed (up to 1×10(6)needles/cm(2)) than state-of-the-art microneedles used for biosensing so far. This allows self-powered (i.e. pump-free) uptake of ISF to be carried out with high efficacy and reliability in a few seconds (uptake rate up to 1µl/s) by exploiting capillarity in the microneedles. By coupling the microneedles operating under capillary-action with an enzymatic glucose biosensor integrated on the back-side of the needle-chip, glucose measurements are performed with high accuracy (±20\% of the actual glucose level for 96\% of measures) and reproducibility (coefficient of variation 8.56\%) in real-time (30s) over the range 0-630mg/dl, thus significantly improving microneedle-based biosensor performance with respect to the state-of-the-art. Copyright © 2014 Elsevier B.V. All rights reserved. This article was published in Biosens Bioelectron and referenced in Biosensors Journal

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version