alexa Senescence evasion by MCF-7 human breast tumor-initiating cells.
Nephrology

Nephrology

Journal of Nephrology & Therapeutics

Author(s): KarimiBusheri F, RasouliNia A, Mackey JR, Weinfeld M

Abstract Share this page

Abstract INTRODUCTION: A subpopulation of cancer cells, tumor-initiating cells, is believed to be the driving force behind tumorigenesis and resistance to radiation and chemotherapy. The persistence of tumor-initiating cells may depend on altered regulation of DNA damage and checkpoint proteins, as well as a reduced propensity to undergo apoptosis or senescence. METHODS: To test this hypothesis, we isolated CD24-/low/CD44+ tumor-initiating cells (as mammospheres) from MCF-7 breast cancer cells grown in adherent monolayer culture, and carried out a comprehensive comparison of cell death and DNA damage response pathways prior to and after exposure to ionizing radiation in mammospheres and monolayer MCF-7 cells. Single and double-strand break repair was measured by single-cell gel electrophoresis. The latter was also examined by phosphorylation of histone H2AX and formation of 53BP1 and Rad51 foci. Apoptosis was quantified by flow-cytometric analysis of annexin V-binding and senescence was analyzed on the basis of cellular beta-galactosidase activity. We employed the telomeric repeat amplification protocol to quantify telomerase activity. Expression of key DNA repair and cell cycle regulatory proteins was detected and quantified by western blot analysis. RESULTS: Our data demonstrate that in comparison to the bulk population of MCF-7 cells (predominantly CD24+/CD44+), the MCF-7 mammosphere cells benefit from a multifaceted approach to cellular protection relative to that seen in monolayer cells, including a reduced level of reactive oxygen species, a more active DNA single-strand break repair (SSBR) pathway, possibly due to a higher level of expression of the key SSBR protein, human AP endonuclease 1 (Ape1), and a significantly reduced propensity to undergo senescence as a result of increased telomerase activity and a low level of p21 protein expression. No significant difference was seen in the rates of double-strand break repair (DSBR) between the two cell types, but DSBR in mammospheres appears to by-pass the need for H2AX phosphorylation. CONCLUSIONS: Enhanced survival of MCF-7 tumor-initiating cells in response to ionizing radiation is primarily dependent on an inherent down-regulation of the senescence pathway. Since MCF-7 cells are representative of cancer cells that do not readily undergo apoptosis, consideration of senescence pathways may play a role in targeting stem cells from such tumors.
This article was published in Breast Cancer Res and referenced in Journal of Nephrology & Therapeutics

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords