alexa Sensitivity, Prediction Uncertainty, and Detection Limit for Artificial Neural Network Calibrations.
Environmental Sciences

Environmental Sciences

Journal of Fundamentals of Renewable Energy and Applications

Author(s): Allegrini F, Olivieri AC

Abstract Share this page

Abstract With the proliferation of multivariate calibration methods based on artificial neural networks, expressions for the estimation of figures of merit such as sensitivity, prediction uncertainty, and detection limit are urgently needed. This would bring nonlinear multivariate calibration methodologies to the same status as the linear counterparts in terms of comparability. Currently only the average prediction error or the ratio of performance to deviation for a test sample set is employed to characterize and promote neural network calibrations. It is clear that additional information is required. We report for the first time expressions that easily allow one to compute three relevant figures: (1) the sensitivity, which turns out to be sample-dependent, as expected, (2) the prediction uncertainty, and (3) the detection limit. The approach resembles that employed for linear multivariate calibration, i.e., partial least-squares regression, specifically adapted to neural network calibration scenarios. As usual, both simulated and real (near-infrared) spectral data sets serve to illustrate the proposal. This article was published in Anal Chem and referenced in Journal of Fundamentals of Renewable Energy and Applications

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords