alexa Sequence specificity of DNA alkylation by the antitumor natural product leinamycin.
Oncology

Oncology

Journal of Cancer Science & Therapy

Author(s): Zang H, Gates KS, Zang H, Gates KS

Abstract Share this page

Abstract Reaction with thiol converts the antitumor natural product leinamycin to an episulfonium ion that alkylates the N(7)-position of guanine residues in double-stranded DNA. The sequence specificity for DNA alkylation by this structurally novel compound has not previously been examined. It is reported here that leinamycin shows significant (>10-fold) preferences for alkylation at the 5'-G in 5'-GG and 5'-GT sequences. The sequence preferences for activated leinamycin are significantly different from that observed for the structurally simple episulfonium ion generated from 2-chloroethyl ethyl sulfide. DNA alkylation by activated leinamycin is inhibited by addition of salt (100 mM NaClO(4)), although the degree of inhibition is somewhat less than that seen for 2-chloroethyl ethyl sulfide. This result suggests that electrostatic interactions between the activated leinamycin and the N(7)-position of guanine residues facilitate efficient DNA alkylation. However, the observed sequence preferences for DNA alkylation by activated leinamycin do not correlate strongly with calculated sequence-dependent variations in the molecular electrostatic potential at the N(7)-atom of guanine residues in duplex DNA. Thus, electrostatic interactions between activated leinamycin and DNA do not appear to be the primary determinant for sequence specificity. Rather, the results suggest that sequence-specific noncovalent interactions of leinamycin with the DNA double helix on the 3'-side of the alkylated guanine residue play a major role in determining the preferred alkylation sites. Consistent with the notion that noncovalent binding plays an important role in DNA alkylation by leinamycin, experiments with 2'-deoxyoligonucleotide substrates confirm that the natural product does not alkylate single-stranded DNA under conditions where duplex DNA is efficiently alkylated. This article was published in Chem Res Toxicol and referenced in Journal of Cancer Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords