alexa Sequential Support Vector Regression with Embedded Entropy for SNP Selection and Disease Classification.


Journal of Biometrics & Biostatistics

Author(s): Liang Y, Kelemen A

Abstract Share this page

Abstract Comprehensive evaluation of common genetic variations through association of SNP structure with common diseases on the genome-wide scale is currently a hot area in human genome research. For less costly and faster diagnostics, advanced computational approaches are needed to select the minimum SNPs with the highest prediction accuracy for common complex diseases. In this paper, we present a sequential support vector regression model with embedded entropy algorithm to deal with the redundancy for the selection of the SNPs that have best prediction performance of diseases. We implemented our proposed method for both SNP selection and disease classification, and applied it to simulation data sets and two real disease data sets. Results show that on the average, our proposed method outperforms the well known methods of Support Vector Machine Recursive Feature Elimination, logistic regression, CART, and logic regression based SNP selections for disease classification.
This article was published in Stat Anal Data Min and referenced in Journal of Biometrics & Biostatistics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version