alexa Sex bias in infectious disease epidemiology: patterns and processes.
Infectious Diseases

Infectious Diseases

Journal of Meningitis

Author(s): GuerraSilveira F, AbadFranch F

Abstract Share this page

Abstract BACKGROUND: Infectious disease incidence is often male-biased. Two main hypotheses have been proposed to explain this observation. The physiological hypothesis (PH) emphasizes differences in sex hormones and genetic architecture, while the behavioral hypothesis (BH) stresses gender-related differences in exposure. Surprisingly, the population-level predictions of these hypotheses are yet to be thoroughly tested in humans. METHODS AND FINDINGS: For ten major pathogens, we tested PH and BH predictions about incidence and exposure-prevalence patterns. Compulsory-notification records (Brazil, 2006-2009) were used to estimate age-stratified ♂:♀ incidence rate ratios for the general population and across selected sociological contrasts. Exposure-prevalence odds ratios were derived from 82 published surveys. We estimated summary effect-size measures using random-effects models; our analyses encompass ∼0.5 million cases of disease or exposure. We found that, after puberty, disease incidence is male-biased in cutaneous and visceral leishmaniasis, schistosomiasis, pulmonary tuberculosis, leptospirosis, meningococcal meningitis, and hepatitis A. Severe dengue is female-biased, and no clear pattern is evident for typhoid fever. In leprosy, milder tuberculoid forms are female-biased, whereas more severe lepromatous forms are male-biased. For most diseases, male bias emerges also during infancy, when behavior is unbiased but sex steroid levels transiently rise. Behavioral factors likely modulate male-female differences in some diseases (the leishmaniases, tuberculosis, leptospirosis, or schistosomiasis) and age classes; however, average exposure-prevalence is significantly sex-biased only for Schistosoma and Leptospira. CONCLUSIONS: Our results closely match some key PH predictions and contradict some crucial BH predictions, suggesting that gender-specific behavior plays an overall secondary role in generating sex bias. Physiological differences, including the crosstalk between sex hormones and immune effectors, thus emerge as the main candidate drivers of gender differences in infectious disease susceptibility.
This article was published in PLoS One and referenced in Journal of Meningitis

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords