alexa Shear softening and structure in a simulated three-dimensional binary glass.
Engineering

Engineering

Journal of Applied Mechanical Engineering

Author(s): Albano F, Falk ML

Abstract Share this page

Abstract Three-dimensional model binary glasses produced by quenching from a range of liquid temperatures were tested in shear over a range of strain rates using molecular-dynamics techniques. Tests were performed under constant volume and constant pressure constraints. The simulations revealed a systematic change in short-range order as a function of the thermal and strain history of the glass. While subtle signs of differences in short-range order were evident in the pair distribution function, three-body correlations were observed to be markedly more sensitive to the changes in structure. One particular structural parameter, the number of aligned three-atom clusters, was analyzed as a function of the degree of supercooling, the strain and the strain rate. The glasses quenched from the supercooled liquid regime were observed to contain an initially higher number of such clusters, and this number decreased under shear. Those quenched from high-temperature equilibrium liquids contained lower numbers of such clusters and these increased or remained constant under shear. The glasses quenched from the supercooled liquid regime showed higher strength, more marked shear softening, and an increased propensity toward shear localization. The evolution of this structural parameter depended both on its initial value and on the imposed shear rate. These results were observed to hold for simulations performed under both constant density and constant pressure boundary conditions. This article was published in J Chem Phys and referenced in Journal of Applied Mechanical Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords