alexa Short-chain fatty acids suppress cholesterol synthesis in rat liver and intestine.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Metabolic Syndrome

Author(s): Hara H, Haga S, Aoyama Y, Kiriyama S

Abstract Share this page

Abstract We previously showed that plasma cholesterol levels decreased following ingestion of a short-chain fatty acid (SCFA) mixture composed of sodium salts of acetic, propionic, and butyric acids simulating cecal fermentation products of sugar-beet fiber (SBF). In the present study, we investigated whether hepatic and small intestinal cholesterol synthesis is involved in the cholesterol-lowering effects of SCFA and SBF. In vitro (expt. 1) and in vivo (expt. 2) cholesterol synthesis rates and the diurnal pattern of SCFA concentrations in portal plasma (expt. 3) were studied in three separate experiments in rats fed diets containing the SCFA mixture, SBF (100 g/kg diet), or the fiber-free control diet. Cholesterol synthesis was measured using 3H2O as a tracer. The in vitro rate of cholesterol synthesis, measured using liver slices, was greater in the SBF group, but not in the SCFA group, than in the fiber-free control group. In contrast, the hepatic cholesterol synthesis rate in vivo was lower in the SCFA group, but not in the SBF group, than in the control group. The mucosal cholesterol synthesis rate for the whole small intestine was <50\% of the hepatic rate. The rate in the proximal region was slightly but significantly lower in the SCFA group, and was significantly higher in the SBF group than in the fiber-free group. The rate in the distal small intestines was also significantly greater in the SBF group than in the fiber-free group. Plasma total cholesterol concentrations were lower in the SCFA and SBF groups than in the fiber-free group in both experiments 2 and 3. Diurnal changes in portal SCFA and cholesterol levels were studied in the experiment 3. SCFA concentrations increased rapidly after the start of feeding the SCFA diet, and changes in plasma cholesterol were the reciprocal of those observed in SCFA. These results show that a decrease in hepatic cholesterol synthesis rate mainly contributes to the lowering of plasma cholesterol in rats fed the SCFA mixture diet. Changes in portal SCFA and cholesterol concentrations support this conclusion. In SBF-fed rats, SCFA produced by cecal fermentation are possibly involved in lowering plasma cholesterol levels by negating the counteractive induction of hepatic cholesterol synthesis caused by an increase in bile acid excretion.
This article was published in J Nutr and referenced in Journal of Metabolic Syndrome

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version