alexa Sieverts law empirical exponent for Pd-based membranes: critical analysis in pure H2 permeation.
Biochemistry

Biochemistry

Journal of Membrane Science & Technology

Author(s): Caravella A, Scura F, Barbieri G, Drioli E

Abstract Share this page

Abstract In this paper, the physical meaning of the Sieverts-type driving force exponent n is analyzed for hydrogen permeation through Pd-based membranes by considering a complex model involving several elementary permeation steps (adsorption on the membrane surface on the feed side, desorption from the surface on the permeate side, diffusion through the metal lattice, and the two transition phenomena surface-to-bulk and bulk-to-surface). First, the characteristic driving force of each step is evaluated, showing that adsorption and desorption singularly considered and the adsorption and desorption considered at the same time are characterized by driving forces depending on the ratio of feed and permeate hydrogen pressure. On the contrary, the diffusion step is found to present a driving force that is composed of two terms, one which corresponds to the original Sieverts law (with an exponent of 0.5) and the other which is the product of the pressure difference and a temperature-dependent factor. Then, the characteristic n is evaluated by applying the multistep model to two different membranes from the literature in several cases, (a) considering each permeation step as the only limiting one and (b) considering the overall effect of all steps. The results of the analysis show that for a low temperature and thin membrane thickness, the effect of the surface phenomena is, in general, a decrease of the overall exponent n toward values lower than 0.5, even though, under particular operating conditions, the n theoretical value of the surface phenomena is equal to unity. At a higher temperature and thickness (diffusion-controlled permeation), n tends to 0.5, even though the rapidity of this tendency depends strictly on the membrane diffusional parameters. In this frame, the expression developed for the diffusion step provides a theoretical reason why n values higher than 0.5 are found even for thick membranes and high temperature, where diffusion is the only rate-determining step. This article was published in J Phys Chem B and referenced in Journal of Membrane Science & Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords