alexa Signal transduction pathways in hyperoxia-induced lung cell death
Medicine

Medicine

Translational Medicine

Author(s): Lin L Mantell, Patty J Lee

Abstract Share this page

Acute lung injury is an unfortunate consequence of oxygen therapy. Increasing evidence suggests that pulmonary dysfunction resulting from acute oxygen toxicity is at least in part due to the injury and death of lung cells. Studies using morphological and biochemical analyses revealed that hyperoxia-induced pulmonary cell death is multimodal, involving not only necrosis, but also apoptosis. A correlative relationship between the severity of hyperoxic acute lung injury and increased apoptosis has been supported by numerous studies in a variety of animal models, although future experiments are necessary to determine whether it is an actual causal relationship. Altered expression of several apoptotic regulatory proteins, such as p53 and Bcl-2, and DNA damage-induced proteins is associated with hyperoxic cell death and lung injury. Stress-responsive proteins, such as heme oxygenase (HO)-1, have been shown to protect animals against hyperoxic cell injury and death. Redox-sensitive transcription factors and mitogen-activated protein kinase signal transduction pathways may play important roles in regulating the expression of stress-responsive and apoptotic regulatory genes. A better understanding of signal transduction pathways leading to hyperoxic cell death may provide new approaches to the treatment of hyperoxia-induced lung injury.

  • To read the full article Visit
  • Open Access
This article was published in Molecular genetics and metabolism and referenced in Translational Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords