alexa Silymarin induces apoptosis primarily through a p53-dependent pathway involving Bcl-2 Bax, cytochrome c release, and caspase activation.
Oncology

Oncology

Journal of Cancer Science & Therapy

Author(s): Katiyar SK, Roy AM, Baliga MS, Katiyar SK, Roy AM, Baliga MS

Abstract Share this page

Abstract Silymarin, a plant flavonoid, has been shown to inhibit skin carcinogenesis in mice. However, the mechanism responsible for the anti-skin carcinogenic effects of silymarin is not clearly understood. Here, we report that treatment of JB6 C141 cells (preneoplastic epidermal keratinocytes) and p53+/+ fibroblasts with silymarin and silibinin (a major constituent of silymarin) resulted in a dose-dependent inhibition of cell viability and induction of apoptosis in an identical manner. Silymarin-induced apoptosis was determined by fluorescence staining (8-64\% apoptosis) and flow cytometry (12-76\% apoptosis). The silymarin-induced apoptosis was primarily p53 dependent because apoptosis occurred to a much greater extent in the cells expressing wild-type p53 (p53+/+, 9-61\%) than in p53-deficient cells (p53-/-, 6-20\%). The induction of apoptosis in JB6 C141 cells was associated with increased expression of the tumor suppressor protein, p53, and its phosphorylation at Ser15. The constitutive expression of antiapoptotic proteins Bcl-2 and Bcl-xl were decreased after silymarin treatment, whereas the expression of the proapoptotic protein Bax was increased. There was a shift in Bax/Bcl-2 ratio in favor of apoptotic signal in silymarin-treated cells, which resulted in increased levels of cytochrome c release, apoptotic protease-activating factor-1, and cleaved caspase-3 and poly(ADP-ribose) polymerase in JB6 C141 cells. The shift in Bax/Bcl-2 ratio was more prominent in p53+/+ fibroblasts than in p53-/- cells. Silymarin-induced apoptosis was blocked by the caspase inhibitor (Z-VAD-FMK) in JB6 C141 cells which suggested the role of caspase activation in the induction of apoptosis. These observations show that silymarin-induced apoptosis is primarily p53 dependent and mediated through the activation of caspase-3.
This article was published in Mol Cancer Ther and referenced in Journal of Cancer Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicals[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords