alexa Simple left-symmetric algebras with solvable Lie algebra


Journal of Generalized Lie Theory and Applications

Author(s): Dietrich Burde

Abstract Share this page

Left-symmetric algebras (LSAs) are Lie admissible algebras arising from geometry. The leftinvariant affine structures on a Lie groupG correspond bijectively to LSA-structures on its Lie algebra. Moreover if a Lie group acts simply transitively as affine transformations on a vector space, then its Lie algebra admits a complete LSA-structure. In this paper we studysimple LSAs having only trivial two-sided ideals. Some natural examples and deformations are presented. We classify simple LSAs in low dimensions and prove results about the Lie algebra of simple LSAs using a canonical root space decomposition. A special class of complete LSAs is studied.

This article was published in manuscripta mathematica and referenced in Journal of Generalized Lie Theory and Applications

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version